
Juri Guljajev

ORACLE TABLES

WHAT WILL WE TALK ABOUT?

Ta
bl

es

Relational

External

Temporary

Heap organized
(“normal”)

Index organized

(IOT)

Object

LITTLE THEORY - HOW DATABASE STORE DATA?

• Smallest unit of data in Oracle is data block.

• Default size of data block is 8 kilobytes.

• Normally only one table rows can be added into one data block

• Database tries to store the whole row in one block

Data block

Customer id = 1
Customer id = 2

CUSTOMER

LITTLE THEORY - ROWID

ROWID looks like AAAAaoAATAAABrXAAA

OOOOOOFFFBBBBBBRRR

• OOOOOO: The data object number that identifies the
database segment (AAAAao in the example).

• FFF: The tablespace-relative datafile number of the datafile
that contains the row (file AAT in the example).

• BBBBBB: The data block that contains the row
(block AAABrX in the example).

• RRR: The row in the block. (AAA in the example)

LITTLE THEORY - INDEX IN HEAP TABLE

Index is using ROWID to point on data from table.

SELECT * FROM customer WHERE id = 1;

HEAP ORGANISED - KEY FEATURES

• Unordered collection of rows

• Retrieval order is not guaranteed

• Rows are inserted where they fit best

• Generally better DML performance (in compare to IOT)

• Worse query performance by PK (in compare to IOT)

• Can be stored in table cluster

HEAP ORGANIZED - PCTFREE

The PCTFREE parameter sets the minimum percentage

of a data block to be reserved as free space for possible

updates to rows that already exist in that block.

Data block

PCTFREE 10

FREE

CREATE TABLE test

 (id NUMBER)

PCTFREE 10;

HEAP ORGANISED - PCTFREE

INSERT (example)

• 1 row size is: 5 bytes + 1900 bytes = 1905 bytes

• PCTFREE 10: (8192B – 10%) / 1905B = 3 rows

PCTFREE 10

3 rows

PCTFREE 50

2 rows

FREE

FREE

HEAP ORGANISED - PCTFREE

UPDATE (example)

Rows, that can’t fit into block after update were moved to

new data block and references were left in old data block.

ROWID of migrated row is not changed.

Ref left here

PCTFREE 10

2 rows left

NEW BLOCK

PCTFREE 10

ROW

PCTFREE 10

First row

updated

3 rows

OLD BLOCK

1 row from old

block

UPDATE UPDATE

HEAP ORGANISED - PCTFREE

UPDATE

Table, that have PCTFREE 50 have enough storage room

to fit added data into the same data block.

PCTFREE 50

2 rows

PCTFREE 50

2 rows

FREE

UPDATE

HEAP ORGANISED - PCTFREE

• Better query performance

• Better storage usage

• Use with caution (set PCTFREE 50, but rows are filled

by 80% with insert)

HEAP/INDEX ORGANISED - PARTITIONING

Partitioning helps to improve performance with high data

volumes and allows DBAs to manage data in more

convenient way.

Non-partitioned table Partitioned table

Partition 1

Partition 2

Partition n

HEAP/INDEX ORGANISED - PARTITIONING

Table can be partitioned by

• Range (for historical data, often partitioned by date

column)

• Hash (no obvious partitioning column)

• List (to group data specifically by some known values)

Range and List partitions may have subpartitions.

HEAP/INDEX ORGANISED - PARTITIONING

HEAP/INDEX ORGANISED - PARTITIONING

Indexes on partitioned table can be global or local partitioned.

• Local

• Maps on table partitions, so easier to maintain

• Unique index can be local, but partitioning key must be
part of index

• Global

• Has own partitions definitions

• Can be partitioned by range or hash

INDEX ORGANISED - KEY FEATURES

• Stored in a variation of a B-tree index structure

• Primary key stores all rows

• Fast access by primary key (specially range scan)

• DML performance might be worse (in compare to
HEAP)

• Take less room on disk (no separate primary key
storage required)

• Cannot be stored in table cluster

INDEX ORGANISED - KEY FEATURES

INDEX ORGANISED - KEY FEATURES

PROS

• Fast access by PK

• Less storage for the same amount of data

• Data is ordered by PK

CONS

• Slower DML

• Secondary index can be slower and take more storage in
compare to index in HEAP table

TABLE CLUSTER

Group of tables that share common columns and store

related data in the same blocks.

CUSTOMER

customer_id

IP_RESTRICTION

customer_id

TIME_RESTRICTION

customer_id

TABLE CLUSTER

SELECT* FROM customer WHERE customer_id = :id;

SELECT * FROM ip_restriction JOIN time_restriction
USING(customer_id) WHERE customer_id = :id;

SELECT * FROM customer JOIN ip_restriction
USING(customer_id) JOIN time_restriction
USING(customer_id) WHERE customer_id = :id;

TABLE CLUSTER

In cluster single data block contains rows from several

clustered tables.

customer
customer

customer

clustered

customer

ip_retstr.

time_retstr.

unclustered

TABLE CLUSTER

And all data, that contains the same clustered key value

are stored together.

unclustered
CUSTOMER_ID FIRST_NAME LAST_NAME …

1 AAA BBB

2 CCC DDD

CUSTOMER_ID IP

1 192.168.1.1

1 192.168.1.2

2 68.1.1.1

CUSTOMER_ID TIME

1 MON 8-18

1 WEN 10-15

2 MON 8-18

TABLE CLUSTER

And all data, that contains the same clustered key value

are stored together.

clustered

CUSTOMER_ID FIRST_NAME LAST_NAME …

1 AAA BBB

IP

192.168.1.1

192.168.1.2

TIME

MON 8-18

2 CCC DDD

TABLE CLUSTER

What you will get

• Disk I/O is reduced for joins of clustered tables.

• Access time improves for joins of clustered tables.

• Less storage is required to store related table and index data because
the cluster key value is not stored repeatedly for each row.

But be careful (do not use when)

• The tables are frequently updated.

• The tables frequently require a full table scans.

• The tables require truncating.

TABLE CLUSTER

There are 2 types of clusters

Index cluster

• Data is co-located within a single block based on a common

column index, so separate cluster index should be created

before adding table into cluster

Hash cluster

• Data is co-located within a single block based on a hash

key and a hash function (own hash function can be used)

TABLE CLUSTER

Index VS Hash clusters

• Hash is faster

• Hash take less storage

• For hash you should know number of hash keys

• Hash cluster size and keys number can’t be changed

• Hash cluster loads CPU more, than index cluster

